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The goal of clinical investigation often lies not only in
estimating the effects of treatment or exposure but

also in understanding their mechanisms. Identifying the
pathways from treatment to outcome and explaining
potential causes of the outcome—those are the specific
domain of “mediation analysis” (1). In their report in
Annals, Vallurupalli and colleagues (2) used the Canaki-
numab Anti-inflammatory Thrombosis Outcomes Study
(CANTOS) to ask whether canakinumab reduced the
incidence of anemia of chronic inflammation in patients
with a history of myocardial infarction and high levels of
high-sensitivity C-reactive protein (hsCRP) and whether
reductions in hsCRP mediated this effect.

CANTOS participants without anemia at baseline
were randomly assigned to receive 1 of 3 dosages of
canakinumab (50, 150, or 300 mg; n = 5796) or pla-
cebo (n = 2887). Over a median follow-up of 3.7 years,
the incidence rate of anemia was 16% (95% CI, 7% to
23%) lower and the mean time free of anemia 42% (CI,
20% to 67%) longer in the canakinumab versus the pla-
cebo group. Using mediation analysis, the authors then
investigated whether, and to what extent, the effect of
canakinumab on hsCRP levels explained the reduction
in anemia rates. We summarize some of the goals, as-
sumptions, and challenges of mediation analysis in
medical and public health studies and use the CANTOS
report to illustrate key concepts at a time of rapidly
developing statistical methodology in this field.

GOALS AND MODELS OF MEDIATION ANALYSIS
Mediation analysis seeks to elucidate the pathways

through which a treatment or exposure leads to an out-
come, to clarify biological mechanisms, to suggest po-
tential ways to intervene to change the relationship of
exposure and outcome, and to identify patients who
might benefit from early intervention. To this end, me-
diation analysis follows a counterfactual, or potential
outcomes, model (1, 3–5) to estimate the difference in
outcomes in 2 situations in which the same patient un-
der the same circumstances either receives or does not
receive the exposure or intervention. Only 1 of these
situations can be observed—hence the term counterfac-
tual. The overall (total) estimated effect of an interven-
tion (denoted by A in Figure 1) on an outcome (de-
noted by Y) is separated into a direct effect (A to Y), and
1 or more indirect effects mediated through 1 or more
mediators or intervening factors (denoted by M). In ran-
domized trials, with proper attention to adherence,
dropout, and other postrandomization events, estimat-
ing the total effect presents no additional complexities.

In the CANTOS trial, A represents randomized as-
signment to canakinumab or placebo, Y the develop-

ment of incident anemia, and M the hsCRP level mea-
sured 3 months after randomization. The total effect of
canakinumab on anemia was the difference between
the rate of anemia if all participants received the drug
and the rate if all patients received placebo.

Mediation analysis can then decompose the total
effect of exposure into its direct and indirect components.
In our example, the “natural direct effect” represents the
change in anemia outcome (Y), assuming alternatively
that all patients were assigned to canakinumab versus all
were assigned to placebo, but with the mediator (M =
hsCRP) held constant for each patient at the level the pa-
tient would have if he or she were assigned to the pla-
cebo group. The natural direct effect therefore can be
interpreted as the part of the total effect that does not
operate through the mediator. The CANTOS investigators
estimated the natural direct effect (the increase in mean
time free of anemia, comparing cankinumab with pla-
cebo while holding hsCRP fixed at the level each pa-
tient would have if assigned to receive placebo) to be
27% (CI, 7% to 51%) (Table 3 of Vallurupalli and col-
leagues [2], top section).

Likewise, the “natural indirect effect” estimates the
effect of A (canakinumab) on Y (anemia) through its ef-
fect on the level of the mediator M (hsCRP). The natural
indirect effect represents the change in time free of
anemia if a patient were assigned to receive canaki-
numab and the mediator hsCRP were to change in
value from what it would be if the patient were as-
signed to receive placebo to what it would be if the
patient were assigned to receive canakinumab. In
CANTOS, the natural indirect effect estimate of 11%
(CI, 3% to 20%) (Table 3 of Vallurupalli and colleagues
[2], top section) represents the change in outcome re-
sulting from the change in hsCRP. Canakinumab lowers
hsCRP, which in turn delays the onset of anemia.

In CANTOS, the total effect of canakinumab on
time to anemia (1.42 on the relative scale, or a 42%
increase) equates to the product of the 11% natural
indirect effect and the 27% natural direct effect
(1.11 × 1.27 = 1.41, rounded here and reported as 1.42
by Vallurupalli and colleagues [2] in Table 3). The au-
thors used a multiplicative, time-to-event statistical
model, so the total effect was the product rather than
the sum of natural direct and indirect effects. If the in-
vestigators had implemented an additive model, natu-
ral direct plus indirect effect would sum to total effect
(6).

This article was published at Annals.org on 24 March 2020.

See also:

Related article . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

Annals of Internal Medicine UNDERSTANDING CLINICAL RESEARCH

© 2020 American College of Physicians 553

http://www.annals.org


The CANTOS trial did not report hazard ratios for
mediation estimation. Cox models require special meth-
ods to decompose total effects into direct and indirect
components (1, 7–9). Traditionally, in the social sciences,
mediators and outcomes have been continuous variables,
often based on test or psychometric scores and modeled
with linear regressions. When mediators and outcomes
depart from these simple cases, analyses require more
assumptions and specialized software. In CANTOS, the
randomized exposure (A) was an ordinal variable (pla-
cebo or canakinumab dosage of 50, 150, or 300 mg),

which was treated as binary (placebo vs. canakinumab);
the continuous mediator was dichotomized, but also used
as continuous (log-transformed); and the outcome was
time to event (anemia).

PROPORTION MEDIATED AND ELIMINATED
Having decomposed effects into their direct and

indirect components, the CANTOS investigators esti-
mated the proportion of total effect mediated through
hsCRP. On the multiplicative scale, this portion is a ratio
(Figure 2) equal to 0.34, or 0.35 in Vallurupalli and col-
leagues' Table 3 (2). Thus, about one third of the effect
of the drug operates through changing hsCRP levels at
3 months—in this example, from 2 mg/L or greater to
less than 2 mg/L.

Another useful measure in mediation is the “con-
trolled direct effect,” the effect of exposure on outcome
when the mediator is fixed at the same level in all par-
ticipants. In CANTOS Table 3, the controlled direct
effect—the estimated increase in the mean time free of
anemia comparing canakinumab with placebo and set-
ting hsCRP to a given level (such as <2 mg/L) in all study
participants—was 29% (CI, 9% to 57%). With this estimate
of controlled direct effect, we can calculate another ratio—
the proportion of the total effect eliminated—by the
change in hsCRP (0.31 in this case [Figure 3]). The propor-
tion eliminated answers the policy question of the poten-
tial for reducing the risk for the outcome (anemia) by in-
tervening on the mediator level (hsCRP). As the controlled

Figure 2. Calculating the proportion (of the effect of
exposure on outcome) mediated from the NDE and the
NIE on the basis of a multiplicative Weibull accelerated
failure time model.

Using the estimates from CANTOS for the mean time free of anemia:

NDE = 1.27

NIE = 1.11

PM =
(NDE * (NIE − 1))
(NDE * NIE − 1)

PM =
(1.27 * (1.11 − 1))
(1.27 * 1.11 − 1)

= 0.34

See the main text for details. CANTOS = Canakinumab Anti-
inflammatory Thrombosis Outcomes Study; NDE = natural direct ef-
fect; NIE = natural indirect effect; PM = proportion mediated.

Figure 1. Mediation by hsCRP (M) from the effect of canakinumab treatment (A) on anemia (outcome, Y).

Time Randomization
(Baseline)

3 mo 5 y

Randomized assignment
canakinumab vs. placebo

(A)

Anemia
(Y)

3-mo
hsCRP

(M)

Baseline
hsCRP
(C2)

Dropouts
(C3) 

Comorbid
conditions

(C1)

The direct effect of treatment is represented by the solid green line and arrow from A to Y without passing through a mediator (M). Indirect effects
are represented by the green dashed lines and arrows from A through M and then to Y. The gray dashed lines represent potential confounders (Cs).
They are possible but unlikely for the A3M relationship in the presence of randomization of A and therefore are not drawn. Likewise, baseline
hsCRP should not be associated with treatment assignment (A) because of randomization at baseline. Baseline hsCRP, however, might be associ-
ated with the subsequent hsCRP as well as with the outcome. The potential confounder at baseline (C1 and C2) probably should also be balanced
at randomization, and we do not consider them as actual confounders in the A3M relationship. By contrast, baseline comorbid conditions (C1)
might confound the M3Y relationship, as well as baseline hsCRP (C2), if the change in hsCRP varies with comorbid conditions, as does outcome (Y).
C3 represents another potential confounder that occurs after baseline. Dropout, for example, might vary with hsCRP if a patient withdraws from the
study after baseline because of poor treatment response and the withdrawal then leads to a worse outcome. hsCRP = high-sensitivity C-reactive
protein.

UNDERSTANDING CLINICAL RESEARCH Mediation Analyses in RCTs

554 Annals of Internal Medicine • Vol. 172 No. 8 • 21 April 2020 Annals.org

http://www.annals.org


direct effect increases, the proportion-eliminated ratio
falls.

Thus, a formal decomposition of direct and indirect
effects can answer clinically relevant questions about
the pathways and potentials for treatments. Neverthe-
less, as with many ratios, the proportions mediated and
eliminated may be unstable and highly variable. Insta-
bility becomes especially serious when the natural di-
rect effect and the natural indirect effect operate in op-
posite directions (“inconsistent mediation”), leading to
smaller total effects of treatment on outcome. For that
reason, these proportion-mediated and proportion-
eliminated ratios will not always be useful in mediation
analysis, even if the decomposition of effects is helpful.

ASSUMPTIONS UNDERLYING MEDIATION

MODELS
Several assumptions must hold for unbiased esti-

mation of direct and indirect effects (Table). A key as-
sumption, often implicit and sometimes overlooked, is
temporality: Treatment (A) precedes the mediator (M),
and both precede the outcome (Y). In CANTOS, ran-
domization preceded 3-month hsCRP measurements,
and both preceded the development of anemia. In ob-
servational studies, however, investigators often mea-
sure exposure (A) and candidate mediators (M) at the
same visit. In that case, they must explain and support
assumptions about the time and directionality of effects
between A and M.

Mediation analyses also assume the absence of
unmeasured confounding in the treatment–outcome
relationship as well as in the mediator–outcome rela-
tionship. The CANTOS trial satisfied the treatment–
outcome assumption, primarily through randomization.
In observational studies, or in randomized trials with
loss to follow-up, nonadherence, or other postrandom-
ization events, investigators must identify and carefully
control for potential confounders. By contrast, random-
ization of treatment does not protect against confound-
ing in the mediator–outcome association, because the
levels of M are not randomized. The investigator should
always collect and adjust for all potential confounders

of the mediator–outcome association. In CANTOS, for
example, previous comorbid conditions may increase
3-month hsCRP levels and may also cause anemia, and
thus would confound the association of 3-month hsCRP
levels with anemia. To address confounding, the inves-
tigators adjusted for age, sex, baseline hsCRP (log-
transformed), and presence of diabetes, heart failure,
and hypertension at baseline.

The estimation of natural direct and indirect effects,
used for estimating the proportion mediated, also re-
quires an assumption of the absence of unmeasured
confounding for the effect of treatment on the media-
tor. Randomization, without loss from postrandomiza-
tion events, again should satisfy this assumption. In
addition, the exposure or treatment cannot affect con-
founders in the mediation–outcome relationship (there
are no arrows from A to C1, C2, or C3 in Figure 1). This
assumption may be challenging to meet and, if in ques-
tion, should be the subject of sensitivity analyses.

Two additional assumptions are noninterference at
the individual patient level and at the study site (also
known as no spillover effects). Under these assump-
tions, individual patients should not interact in ways

Figure 3. Calculating the proportion (of the effect of
exposure on outcome) eliminated from the CDE and the
TE on the basis of a multiplicative Weibull accelerated
failure time model.

Using the estimates from CANTOS for relative mean time free of anemia:

TE = 1.42

CDE = 1.29

PE =
(TE − CDE)

(TE − 1)

PE =
(1.42 − 1.29)

(1.42 − 1)
= 0.31

See the main text for details. CANTOS = Canakinumab Anti-
inflammatory Thrombosis Outcomes Study; CDE = controlled direct
effect; PE = proportion eliminated; TE = total effect.

Table. Assumptions to Satisfy for Use of Mediation Analysis of Treatment (A), Mediator (M), and Outcome (Y)

Assumptions Approaches to Satisfy Assumptions

Overall assumptions
Temporality: A precedes M, and M precedes Y in time Capture data at precisely ordered times
No unmeasured confounding in (A3Y) relationship Randomization and complete follow-up without losses
No unmeasured confounding in (M3Y) relationship Collection of (and control for) covariates

For estimation of natural direct and indirect effects
No unmeasured confounding in A3M relationship Randomization and complete follow-up without losses
No effects of exposure (A) on the confounders of the M3Y relationship Design; sensitivity analyses

Spillover
No spillover effects at the individual patient level Treat and measure patients individually rather than in groups
No spillover effects across study sites Limit contacts of patients and investigators across sites

Usual design assumptions
No selection bias Careful design and selection criteria
No measurement error Choose measures with regard to precision and reproducibility
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that may affect the relationship of the mediator to the
outcome, and study sites should not affect the outcome
at other sites (10). In CANTOS, both assumptions were
probably met, as will be the case with typical random-
ized controlled trials. In cluster-level randomized trials
or group therapy interventions, however, these as-
sumptions are more difficult to satisfy.

SENSITIVITY ANALYSES
As with many model-based and assumption-

dependent analyses, mediation analyses should dem-
onstrate robustness of findings and conclusions and
assess the possible effects of confounding and interfer-
ence. For the direct intervention effect, one can esti-
mate how influential a confounder would need to be to
explain away any observed direct effect. The same task
applies to assessing sensitivity to violations of the as-
sumption of no mediator–outcome confounding: how
strong an unobserved confounder (or confounders)
would need to be to eliminate (reduce to zero) the es-
timated effects and to render that estimate nonsignifi-
cant (1, 5, 11–13). To be able to support such sensitivity
analyses, investigators should design studies to collect
covariates with no missing values and little or no mea-
surement error. By design, covariates collected and
used ideally should also represent unobserved poten-
tial confounders.

SPECIALIZED STATISTICAL SOFTWARE
Well-documented, specialized programs are es-

sential for mediation analysis and have become avail-
able in the past decade, including the macro used by the
CANTOS authors (14), across common software pack-
ages, such as SAS (SAS Institute) (15), Stata (StataCorp)
(16–18), and R (R Foundation for Statistical Computing)
(19–21). Updates and extension will probably occur regu-
larly in this field of ongoing statistical innovation.

ADDED COMPLEXITIES AND SPECIAL

SITUATIONS
Although CANTOS investigated a single mediation

pathway, more complex questions and designs, such as
multiple correlated mediators, create methodological
challenges (22). Treatment (A) and mediator (M) may
interact, and this interaction may alter, sometimes sub-
stantially, the estimates of direct and indirect effects of
treatment (1). Mediation and interaction together may
decompose into even more refined effects, a complex-
ity beyond the scope of this summary and the CANTOS
example (23). Simultaneous effects of interactions of
treatments and other factors, or interactions of media-
tors and other factors, are also details beyond the reach
of this summary (1). Likewise, in situations of time-
varying exposures, mediators, and confounders, simple
concepts of direct and indirect effects do not hold, and
analyses require weighted regressions to account for
all factors (24).

Mediation analysis also may apply to studies in
which randomization and treatment assignment occur
at the cluster level, and in which mediation can occur at
the individual as well as at the cluster—or intervention—
level (1, 25–27). Finally, mediation often requires spe-
cial attention to the complexities of variance estimation,
measurement error, and missing values. Mediation
analyses, as with any modeling, benefit from careful de-
sign, including statistical power calculations (28, 29) for
estimating both direct and indirect effects. Calculations
also should reflect the impact of multiple comparisons.

In conclusion, mediation analysis based on random-
ized trials can, as in the CANTOS report, help to explain
the mechanisms by which treatments might lead to in-
tended outcomes. Careful attention to assumptions and
control of confounding are essential. When properly per-
formed, however, a mediation analysis can produce help-
ful clinical and mechanistic insights.
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